A posteriori error estimation for the dual mixed finite element method for the p-Laplacian in a polygonal domain

نویسندگان

  • Emmanuel Creusé
  • Mohamed Farhloul
  • Luc Paquet
  • E. CREUSE
چکیده

For the discrete solution of the dual mixed formulation for the p-Laplace equation, we define two residues R and r. Then we bound the norm of the errors on the two unknowns in terms of the norms of these two residues. Afterwards, we bound the norms of these two residues by functions of two error estimators whose expressions involve at the very most the datum and the computed quantities. We next explain how the discretized dual mixed formulation is hybridized and solved. We close our paper by numerical tests for p = 1.8 and p = 3 firstly to corroborate the orders of convergence established by M. Farhloul and H. Manouzi [1], and secondly to experimentally verify the reliability of our a posteriori error estimates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted L-norm a Posteriori Error Estimation of Fem in Polygons

In this paper, we generalize well-known results for the L2-norm a posteriori error estimation of finite element methods applied to linear elliptic problems in convex polygonal domains to the case where the polygons are nonconvex. An important factor in our analysis is the investigation of a suitable dual problem whose solution, due to the non-convexity of the domain, may exhibit corner singular...

متن کامل

A Posteriori Error Estimates for Finite Element Exterior Calculus: The de Rham Complex

Finite element exterior calculus (FEEC) has been developed over the past decade as a framework for constructing and analyzing stable and accurate numerical methods for partial differential equations by employing differential complexes. The recent work of Arnold, Falk, and Winther includes a well-developed theory of finite element methods for Hodge–Laplace problems, including a priori error esti...

متن کامل

A Posteriori Error Estimation for a Dual Mixed Finite Element Approximation of Non–newtonian Fluid Flow Problems

A dual mixed finite element method, for quasi–Newtonian fluid flow obeying to the power law, is constructed and analyzed in [8]. This mixed formulation possesses local (i.e., at element level) conservation properties (conservation of the momentum and the mass) as in the finite volume methods. We propose here an a posteriori error analysis for this mixed formulation.

متن کامل

A posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation

In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.

متن کامل

A Priori and A Posteriori Error Estimations for the Dual Mixed Finite Element Method of the Navier-Stokes Problem

This article is concerned with a dual mixed formulation of the Navier-Stokes system in a polygonal domain of the plane with Dirichlet boundary conditions and its numerical approximation. The gradient tensor, a quantity of practical interest, is introduced as a new unknown. The problem is then approximated by a mixed finite element method. Quasi-optimal a priori error estimates are obtained. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012